skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Patton, Reagan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Formate (HCOO–) is the most dominant intermediate identified during carbon dioxide electrochemical reduction (CO2ER). While previous studies showed that copper (Cu)-based materials that include Cu(0), Cu2O, and CuO are ideal catalysts for CO2ER, challenges to scalability stem from low selectivity and undesirable products in the −1.0–1.0 V range. There are few studies on the binding mechanism of intermediates and products for these systems as well as on changes to surface sites upon applying potential. Here, we use an in situ approach to study the redox surface chemistry of formate on Cu thin films deposited on Si wafers using a VeeMAX III spectroelectrochemical (SEC) cell compatible with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Spectra for surface species were collected in real time as a function of applied potential during cyclic voltammetry (CV) experiments. Results showed the reproducibility of CV curves on freshly prepared Cu/Si wafers with relatively high signal-to-noise ATR-FTIR absorbance features of surface species during these electrochemical experiments. The oxidation reaction of HCOO– to bicarbonate (HCO3–) was observed using ATR-FTIR at a voltage of 0.27 V. Samples were then subjected to reduction in the CV, and the aqueous phase products below the detection limit of the SEC-ATR-FTIR were identified using ion chromatography (IC). We report the formation of glycolate (H3C2O3–) and glyoxylate (HC2O3–) with trace amounts of oxalate (C2O42–), indicating that C–C coupling reactions proceed in these systems. Changes to the oxidation state of surface Cu were measured using X-ray photoelectron spectroscopy, which showed a reduction in Cu(0) and an increase in Cu(OH)2, indicating surface oxidation. 
    more » « less